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Time diffraction of evanescent waves

Mufei Xiao*
Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma xledyldpartado Postal 2681,
Codigo Postal 22800 Ensenada, Baja California, Mexico
(Received 18 December 1998

The concept of time diffraction of evanescent electromagnetic waves is proposed. Transient propagation of
electromagnetic waves is studied in two forms: propagating and evanescent waves. Differences and similarities
between quantum particle tunneling and photon tunneling are clearly demonstrated. Traversal time cannot be
accurately defined due to diffraction in time. Nevertheless, a delay time is defined as the difference between the
time of flight and the peak time of the transient light. The delay time is found to increase linearly and slowly
with the traversal distance. Superluminal tunneling is found possible only for evanescent waves, and Einstein
causality is not violated.S1063-651X99)12211-§

PACS numbds): 42.25.Bs, 73.40.Gk

Propagation of electromagnetic waves in one dimensionvhere the group velocity exceed the light speed in vacuum
can be complicated when the waves travel through an evawere believed to be of no appreciable physical significance
nescent area. The evanescent area can be, for example[ld]. Recent confirmative experimer 3] brought back the
metallic barrier[1] or a photonic band-gap structuf2,3]. reality of the superluminal tunneling. Facing this embarrass-
Despite the exponential decay, a small part of the waves maifig situation, many attempted to explain the phenomenon as
tunnel through the area, a situation closely analogous to th@ reshaping of the pulg@,5], i.e., attenuation of the pulse in

one-dimensional tunneling of a quantum particle through dhe barrier shifts the peak of the pulse forward. But little is
potential barrief1,4]. known why the barriers attenuate pulses unevenly.

It is interesting to note that as one of the few solvable So far, it seems we are confident to discuss the tunneling
problems in quantum mechanics, one-dimensional tunnelingith @ mixed terminology of photons and quantum particles.
of a monochromatic wave function through various classi-t is also widely believed that experiments with photons can
cally forbidden potential barriers has been included in everye directly used to understand particle tunneling. This under-
basic textbook in quantum mechanics. This is to demonstratgtanding originates from the apparent resemblance of the two
the nonclassical concept of spatial distribution of probabilitycases in terms of the stationary stgtegl]. In both cases the
of a quantum particle. There appears no difficulty to analyti-waves satisfy the same form of time-independent Helmholtz
cally obtain the stationary field distribution in the propagat-€quation inside and outside the barrier area. However, one
ing as well as in the evanescent regions, and the transmissigfiould bear in mind that as far as time-dependent tunneling
and reflection coefficients can be accurately determineds concerned, the transient terms are the only things that mat-
However, despite the clear picture, the subject of tunnelinder, and to decompose the time-dependent part from the wave
has for a long time been controversiake, e.g., a review in functions is no longer trivial.

Ref. [5]). What have been in dispute are not the stationary In the present paper, we shall study the transient terms in
states in textbooks, but rather the transient terms, for exPhoton tunneling, together with a close comparison with the
amp|e the time it takes to tunnel through a barrier. So farparticle tunneling. We note that the diffraction in time for
various times have been proposed as a measure of the tuidantum particles in one dimension was studied several de-
neling time. The standard treatment for waves is to look intoccades ag¢12]. To make a connection, we shall recapitulate
the collective movement of a group of waves, and to define §0me important results from Ref12] and we shall then
group velocity and a phase velocity. In one-dimensional tunpresent new results on time diffraction of photons. A numeri-
neling, based on the stationary states, the phase time for tt&l example of a metallic barrier will be presented to dem-
tunneling can be readily formulated,1]. Other proposed onstrate the diffraction. After the numerical example, the
times include the dwell time that averages a beam of parconclusions will be presented.
ticles, the interaction timg6] that concerns time-modulated ~ In 1952, Moshinsky[12] studied the shutter problem as
potentials, and the Larmor timg] that uses a local time depicted schematically in Fig. 1, where a monochromatic
reference. An important reason for proposing that many timé&eam of noninteracting particles of mass and energy
scales stems from the theoretical pred|C1ﬁB[9] and experi- #2k?/2m travels along the axis from the left to the right, at
mental confirmatiofi2,3,10 of the existence of superluminal Xx=0 the beam is stopped by a shutter of a perfect absorber
tunneling, i.e., a short light pulse travels faster by tunnelingvhich is perpendicular to the beam, and a0 the shutter is
through a barrier than by moving in vacuum, an apparenepened. A transient current of the particles can be observed
violation of the Einstein causality. In earlier times, the casedt a timet>0 and a distance from the shutter. Mathemati-
cally, the shutter problem can be described as follows. The
initial wave function is
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fore, superluminal travel is not possible for relativistic par-
ticles, and the diffraction in Fig. 1 can only be true for slow
/\ A A particles.

Having discussed the Moshinsky shutter problem, we turn
our attention to the case of photons. For the sake of an easy
terminology, we shall specify our evanescent area to be a
metallic barrier. Therefore, in the case where free current and

Transient Current
<<
<3
—

~3

t>0 . - IR
charge are both absefite., V-E=0 and VXB=0), one
obtains from the Maxwell equations the well-known wave
__________ R equation:
---------- 2 T FPE(X,t) FPE(X,1) JE(X,1)
__________ NP =pe +po )

X2 o2 a

whereu is the permeabilitye is the permitivity, andr is the
conductivity. In the following, let us consider separately two
extreme casesy~0 ando~oo

) o _ ) In the case of a dielectric mediuna-{-0), one has from
where ® (—x) is the Heaviside unit step functio®(<0) Eq. (5)

=0 and®(=0)=1. The wave function after the shutter is

FIG. 1. The Moshinsky shutter.

opened (>0) satisfies the time-dependent Safinger PE(X,t) 1 JPE(x1)
equation: PR > (6)
X c ot
321!/(X,t): —2mi d(x,t) @ where, to simplify the notation, we have assumed the
NG h at vacuum light speedc=1/\upe with the approximationu

~ pg and e~ €y, which will not effect the generality of our

A solution of Eqs(1) and(2) is the Moshinski functiofi12]; discussions. The transient ;qlgtion of .the qbove equation un-
der the Moshinsky shutter initial condition in E@.) can be

easily obtained agl2]
M(xkt)— gl (o R gt (x— i kt/m)/ 21 At/ m],

3 E(x,t)=0(t—x/c)

: 1
e|k(xfct)_ E} (7)

where erfcg) is the complementary error function of a com- One realizes that, for propagating waves, the transient field
plex variable. The transient current can then be calculated byimps suddenly from zero t$ at the time of flightt=x/c,
which confirms that superluminal traveling cannot be pos-
h a/\/l( b IM* (X,t) sible for propagating waves.
I 0= o | M) — = M) —— ——|. The more interesting caseds- =, a perfect conductor. In
(4) this case, one only keeps the second term on the right side of
the wave equation in E@5) and writes down the wave equa-

A typical time dependence of the current at a fixed distance tion as

is shown also in Fig. 1, where the current is normalized to )

the stationary velocity =#k/m and T is the time of flight, FEXD o JE(XD) ®)
T=x/v. After a sufficient timet~o, the transient current NG €c? ot '

becomes stable at the stationary curréfi,t~~)=v (the

dotted line in Fig. L It is interesting to note that the curve in where we have also assumgd- uo,. Comparing the above
Fig. 1 has the familiar form of Fresnel diffraction of light in evanescent wave equation to the time-dependent Siclyer
semi-infinite spacedsee p. 430 in Ref[11]). The Fresnel in Eq. (2), one immediately writes down the transient solu-
diffraction is in the spatial domain while the diffraction tion of Eq.(8) under the Moshinsky shutter initial condition
shown in Fig. 1 is in the time domain. We make two remarksin Eq. (1) as

on the time diffraction in Fig. 1(i) This temporal diffraction L
effect was recently verified experimentally with atomic K — &' Koot ., e
waves[13]. (ii)) One can see from Fig. 1 that, before the time Axk )= 2 ¢ erfd (x+2ic’wt)/ yacct],

of flight, the observer can already see a flow of particles, 9)
which implies that nonrelativistic particles may travel faster

than the time of flight. However, Moshinsky showed in Ref. wherec’=cey/o andw=ck is the light angular frequency.
[12] that there was no similar transient solution for the Comparing the two solutions in EqE) and(9), one re-
Klein-Gordon equation, which is the equation that relativisticalizes that the main difference between the two functions is
particles obey. In the relativistic case, the transient currenthat M(x,k,t) has a time-dependent oscillaticg<* vam
remains exactly zero before the time of flighit2]. There- whereasY(x,k,t) contains a time-dependent exponentlal de-
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FIG. 2. Time diffraction of evanescent waves for four traversal
distancex. The time scaléhorizontal axigis t=0~100T for each
curve.lq is the peak intensityperpendicular axjs

S
o

cay e~ ¢kt Furthermore, for sufficient long times-o, at
any distancex, the wavesX(x,k,t~«) reduce to zero. So,
what one may expect from the functiof{x,k,t) is a time
diffraction similar to the Moshinsky functiodM (x,k,t), but

the new diffraction will not have the time-dependent oscilla-
tion and will reduce to zero at stationary states. It is worth
noting that in realistic cases one would expect both oscilla-
tion and exponential decay, but at least in the case of a metal
the exponential decay dominates. In the following, let us
present a numerical example of the intensity flow of the eva-
nescent waves,
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I(X,1)=X(X,Kk,1) X* (x,k,t), (10 FIG. 3. Distance dependence of peak light intensity in ditact
and logarithmic(b) scales.
where the conductivityo is calculated from the plasmon
frequencyw, and damping rate of the metal, as

z

2.5

o(w)= P (11

We choose silver to be the metal and we assume the light —~20 - )
wavelengthh =685 nm[1-3]. Other parameters are chosen jm &
from Ref.[1], #iw,=9.04 eV andy=0.002v,. w

In order to show the expected time-diffraction spot, we
present in Fig. 2 four calculated curves fo+0.1,1,10, and
100 nm, respectively. The time is scaled to the time of flight
in vacuumT=x/c, and the time scale for each curve is 0
~t~100T. For each curve one finds a clear diffraction spot.
The forward and backward tails of the spot tend to zero, and
the spot peak occurs sometime afterinterpretation of Fig.
2 is as follows. For an observer at a distancehere is a
certain time interval when the observer may see the light, y
and the intensity of the observed light is afunc.tlon of time. 0.0 ¢ % 75 35 yren 500
Apparently, it may also state that at a given time, the ob- x (nm)
server receives changing light at different distances. One also
concludes that superluminal tunneling through an evanescent FIG. 4. Distance dependence of delay time.
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region is possible for photons, due to the fact that the left taithe waves are establishing, a forward tail of the waves is
of the time spot extends to the times shorter than already extended into the barrier. Although, for every part of
The calculation has been extended for more distancethe waves the traversal distance is the same, but, for a certain
0.1 nm~x~450 nm in Figs. 3 and 4. Figurés shows the  observation time, the forward part may be closer to its peak
distance dependence of the peak light intensity of the timefight intensity than the later parts, or, equivalently, an earlier
diffraction spots, which, as one may expect, exhibits a rapighart of an incident wave train may suffer less attenuation.
decay. In order to have a closer look at the decay, we presefferefore, the peak of an incident light pulse is shifted for-
the same curve in a logarithmic scale in Fig))3where one  \yard, so that its group velocity exceeds the light speed in
realizes that after the first three points the rest of the curve i§;c,um. The above discussion details the previous conjec-
exponential[a straight line in the logarithmic plot in Fig. ture of the reshaping process.
3(b)], and the first three points decay even more rapidly. As Let us now summarize the present work. We have pro-

far as traversal time is concerned, we are still in an embar—osed the concept of time diffraction of evanescent light

rassing situation where one does not know how to define aR o .
; . . . waves, which is shown to be useful to clarify the one-
accurate time scale because of the time diffraction. However,. . .
é:llmensmnal tunneling of photons. We have also shown the

between the time of flight and the peak time of the time_difference and resemblance between particle and photon tun-

diffraction spot. We have found an interesting phenomenof€!ing. According to Reft12], transit propagation of nonrel-
that the delay time is almost constant for different distancesdtivistic particles that obey the time-dependent Sdimger
which seems consistent with an earlier predictiad] and ~ €dquation results in Fr_esnel d|ﬁr_a(_:t|(_)n in 'Fhe time domain,
with the recent experimental results that showed a lack oyvhereas the propagation of relativistic particles that obey the
thickness dependence of the tunneling tif3. A closer Klein-Gordon equation cannot show time diffraction. In the
look at the delay time reveals that the delay time increaseBresent work, we have found that the evanescent electromag-
slowly and linearly with the increasing distances as shown irmetic waves are also subject to time diffraction, while propa-
Fig. 4. One learns from Fig. 4 that the delay time increasegating electromagnetic waves are not. Based on the discov-
considerably slowly from about 0.05 to X1.0" ** s within  ered time diffraction, we have concluded that an accurate
the same time scale while the distance increases from 1 twaversal time cannot be defined. We have demonstrated that
450 nm. This means that increasing the thickness of the evdhe delay time, which is the time interval between the time of
nescent area results in small changes in the delay time. If thiight and the peak time, is a slow and linear function of the
difference cannot be resolved in experiments, the delay tim&gaversal distance. Similar to the case of nonrelativistic par-
might be considered constant. ticle tunneling, we have shown that superluminal tunneling is

In passing, we follow other authors on this subject topossible for evanescent waves. We have argued with a dis-
show our loyalty to the principle of the Einstein causality. cussion of the reshaping process that the Einstein causality is
We assume that there is a waiting process for the arrivingot violated in the cases where the group velocity of a light
waves to establish themselves in front of the barrier. Whempulse exceeds the light speed.
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