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Time diffraction of evanescent waves
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Codigo Postal 22800 Ensenada, Baja California, Mexico
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The concept of time diffraction of evanescent electromagnetic waves is proposed. Transient propagation of
electromagnetic waves is studied in two forms: propagating and evanescent waves. Differences and similarities
between quantum particle tunneling and photon tunneling are clearly demonstrated. Traversal time cannot be
accurately defined due to diffraction in time. Nevertheless, a delay time is defined as the difference between the
time of flight and the peak time of the transient light. The delay time is found to increase linearly and slowly
with the traversal distance. Superluminal tunneling is found possible only for evanescent waves, and Einstein
causality is not violated.@S1063-651X~99!12211-6#

PACS number~s!: 42.25.Bs, 73.40.Gk
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Propagation of electromagnetic waves in one dimens
can be complicated when the waves travel through an e
nescent area. The evanescent area can be, for examp
metallic barrier@1# or a photonic band-gap structure@2,3#.
Despite the exponential decay, a small part of the waves
tunnel through the area, a situation closely analogous to
one-dimensional tunneling of a quantum particle throug
potential barrier@1,4#.

It is interesting to note that as one of the few solva
problems in quantum mechanics, one-dimensional tunne
of a monochromatic wave function through various clas
cally forbidden potential barriers has been included in ev
basic textbook in quantum mechanics. This is to demonst
the nonclassical concept of spatial distribution of probabi
of a quantum particle. There appears no difficulty to anal
cally obtain the stationary field distribution in the propag
ing as well as in the evanescent regions, and the transmis
and reflection coefficients can be accurately determin
However, despite the clear picture, the subject of tunne
has for a long time been controversial~see, e.g., a review in
Ref. @5#!. What have been in dispute are not the station
states in textbooks, but rather the transient terms, for
ample the time it takes to tunnel through a barrier. So
various times have been proposed as a measure of the
neling time. The standard treatment for waves is to look i
the collective movement of a group of waves, and to defin
group velocity and a phase velocity. In one-dimensional t
neling, based on the stationary states, the phase time fo
tunneling can be readily formulated@5,1#. Other proposed
times include the dwell time that averages a beam of p
ticles, the interaction time@6# that concerns time-modulate
potentials, and the Larmor time@7# that uses a local time
reference. An important reason for proposing that many t
scales stems from the theoretical prediction@8,9# and experi-
mental confirmation@2,3,10# of the existence of superlumina
tunneling, i.e., a short light pulse travels faster by tunnel
through a barrier than by moving in vacuum, an appar
violation of the Einstein causality. In earlier times, the ca

*Mailing address: CCMC-UNAM, P.O. Box 439036, San Ysidr
CA 92143. Electronic address: mufei@ccmc.unam.mx
PRE 601063-651X/99/60~5!/6226~4!/$15.00
n
a-
, a

ay
he
a

g
i-
y
te

i-
-
ion
d.
g

y
x-
r,
un-
o
a
-
he

r-

e

g
t
s

where the group velocity exceed the light speed in vacu
were believed to be of no appreciable physical significa
@11#. Recent confirmative experiments@2,3# brought back the
reality of the superluminal tunneling. Facing this embarra
ing situation, many attempted to explain the phenomenon
a reshaping of the pulse@2,5#, i.e., attenuation of the pulse i
the barrier shifts the peak of the pulse forward. But little
known why the barriers attenuate pulses unevenly.

So far, it seems we are confident to discuss the tunne
with a mixed terminology of photons and quantum particl
It is also widely believed that experiments with photons c
be directly used to understand particle tunneling. This und
standing originates from the apparent resemblance of the
cases in terms of the stationary states@1,4#. In both cases the
waves satisfy the same form of time-independent Helmh
equation inside and outside the barrier area. However,
should bear in mind that as far as time-dependent tunne
is concerned, the transient terms are the only things that m
ter, and to decompose the time-dependent part from the w
functions is no longer trivial.

In the present paper, we shall study the transient term
photon tunneling, together with a close comparison with
particle tunneling. We note that the diffraction in time fo
quantum particles in one dimension was studied several
cades ago@12#. To make a connection, we shall recapitula
some important results from Ref.@12# and we shall then
present new results on time diffraction of photons. A nume
cal example of a metallic barrier will be presented to de
onstrate the diffraction. After the numerical example, t
conclusions will be presented.

In 1952, Moshinsky@12# studied the shutter problem a
depicted schematically in Fig. 1, where a monochroma
beam of noninteracting particles of massm and energy
\2k2/2m travels along thex axis from the left to the right, at
x50 the beam is stopped by a shutter of a perfect abso
which is perpendicular to the beam, and att50 the shutter is
opened. A transient current of the particles can be obser
at a timet.0 and a distancex from the shutter. Mathemati
cally, the shutter problem can be described as follows. T
initial wave function is

c~x,t50!5Q~2x!eikx, ~1!
6226 © 1999 The American Physical Society



is

-

e
t

t

n
n

n
rk

ic
e

es
te
ef
he
tic
e

r-
w

urn
asy
e a
and

ve

o

the

un-

eld

os-

e of
-

u-
n

.

s is

e-

PRE 60 6227BRIEF REPORTS
whereQ(2x) is the Heaviside unit step function:Q(,0)
50 andQ(>0)51. The wave function after the shutter
opened (t.0) satisfies the time-dependent Schro¨dinger
equation:

]2c~x,t !

]x2
5

22mi

\

]c~x,t !

]t
. ~2!

A solution of Eqs.~1! and~2! is the Moshinski function@12#:

M~x,k,t !5
1

2
ei (kx2\k2t/2m)erfc@~x2\kt/m!/A2i\t/m#,

~3!

where erfc(z) is the complementary error function of a com
plex variable. The transient current can then be calculated

J~x,t !5
\

2im FM* ~x,t !
]M~x,t !

]x
2M~x,t !

]M* ~x,t !

]x G .
~4!

A typical time dependence of the current at a fixed distancx
is shown also in Fig. 1, where the current is normalized
the stationary velocityv5\k/m andT is the time of flight,
T5x/v. After a sufficient timet;`, the transient curren
becomes stable at the stationary currentJ(x,t;`)5v ~the
dotted line in Fig. 1!. It is interesting to note that the curve i
Fig. 1 has the familiar form of Fresnel diffraction of light i
semi-infinite space~see p. 430 in Ref.@11#!. The Fresnel
diffraction is in the spatial domain while the diffractio
shown in Fig. 1 is in the time domain. We make two rema
on the time diffraction in Fig. 1.~i! This temporal diffraction
effect was recently verified experimentally with atom
waves@13#. ~ii ! One can see from Fig. 1 that, before the tim
of flight, the observer can already see a flow of particl
which implies that nonrelativistic particles may travel fas
than the time of flight. However, Moshinsky showed in R
@12# that there was no similar transient solution for t
Klein-Gordon equation, which is the equation that relativis
particles obey. In the relativistic case, the transient curr
remains exactly zero before the time of flight@12#. There-

FIG. 1. The Moshinsky shutter.
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fore, superluminal travel is not possible for relativistic pa
ticles, and the diffraction in Fig. 1 can only be true for slo
particles.

Having discussed the Moshinsky shutter problem, we t
our attention to the case of photons. For the sake of an e
terminology, we shall specify our evanescent area to b
metallic barrier. Therefore, in the case where free current

charge are both absent~i.e., ¹W •EW 50 and ¹W 3BW 50W ), one
obtains from the Maxwell equations the well-known wa
equation:

]2E~x,t !

]x2
5me

]2E~x,t !

]t2
1ms

]E~x,t !

]t
, ~5!

wherem is the permeability,e is the permitivity, ands is the
conductivity. In the following, let us consider separately tw
extreme cases,s;0 ands;`.

In the case of a dielectric medium (s;0), one has from
Eq. ~5!

]2E~x,t !

]x2
5

1

c2

]2E~x,t !

]t2
, ~6!

where, to simplify the notation, we have assumed
vacuum light speedc51/Ame with the approximationm
;m0 ande;e0, which will not effect the generality of our
discussions. The transient solution of the above equation
der the Moshinsky shutter initial condition in Eq.~1! can be
easily obtained as@12#

E~x,t !5Q~ t2x/c!Feik(x2ct)2
1

2G . ~7!

One realizes that, for propagating waves, the transient fi
jumps suddenly from zero to12 at the time of flightt5x/c,
which confirms that superluminal traveling cannot be p
sible for propagating waves.

The more interesting case iss;`, a perfect conductor. In
this case, one only keeps the second term on the right sid
the wave equation in Eq.~5! and writes down the wave equa
tion as

]2E~x,t !

]x2
5

s

e0c2

]E~x,t !

]t
, ~8!

where we have also assumedm;m0. Comparing the above
evanescent wave equation to the time-dependent Schro¨dinger
in Eq. ~2!, one immediately writes down the transient sol
tion of Eq. ~8! under the Moshinsky shutter initial conditio
in Eq. ~1! as

X~x,k,t !5
1

2
eikxe2c8kvterfc@~x12ic8vt !/A4c8ct#,

~9!

wherec8[ce0 /s andv5ck is the light angular frequency
Comparing the two solutions in Eqs.~3! and ~9!, one re-

alizes that the main difference between the two function
that M(x,k,t) has a time-dependent oscillationei\k2t/2m,
whereasX(x,k,t) contains a time-dependent exponential d
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cay e2c8kvt. Furthermore, for sufficient long timest;`, at
any distancex, the wavesX(x,k,t;`) reduce to zero. So
what one may expect from the functionX(x,k,t) is a time
diffraction similar to the Moshinsky functionM(x,k,t), but
the new diffraction will not have the time-dependent oscil
tion and will reduce to zero at stationary states. It is wo
noting that in realistic cases one would expect both osc
tion and exponential decay, but at least in the case of a m
the exponential decay dominates. In the following, let
present a numerical example of the intensity flow of the e
nescent waves,

I ~x,t !5X~x,k,t !X* ~x,k,t !, ~10!

where the conductivitys is calculated from the plasmo
frequencyvp and damping rateg of the metal, as

s~v!5
i e0vp

2

v1 ig
. ~11!

We choose silver to be the metal and we assume the
wavelengthl5685 nm@1–3#. Other parameters are chose
from Ref. @1#, \vp59.04 eV andg50.002vp .

In order to show the expected time-diffraction spot, w
present in Fig. 2 four calculated curves forx50.1,1,10, and
100 nm, respectively. The time is scaled to the time of flig
in vacuumT5x/c, and the time scale for each curve is
;t;100T. For each curve one finds a clear diffraction sp
The forward and backward tails of the spot tend to zero,
the spot peak occurs sometime afterT. Interpretation of Fig.
2 is as follows. For an observer at a distancex, there is a
certain time interval when the observer may see the lig
and the intensity of the observed light is a function of tim
Apparently, it may also state that at a given time, the
server receives changing light at different distances. One
concludes that superluminal tunneling through an evanes

FIG. 2. Time diffraction of evanescent waves for four traver
distancesx. The time scale~horizontal axis! is t50;100T for each
curve.I 0 is the peak intensity~perpendicular axis!.
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FIG. 3. Distance dependence of peak light intensity in direct~a!
and logarithmic~b! scales.

FIG. 4. Distance dependence of delay time.
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region is possible for photons, due to the fact that the left
of the time spot extends to the times shorter thanT.

The calculation has been extended for more distan
0.1 nm;x;450 nm in Figs. 3 and 4. Figure 3~a! shows the
distance dependence of the peak light intensity of the tim
diffraction spots, which, as one may expect, exhibits a ra
decay. In order to have a closer look at the decay, we pre
the same curve in a logarithmic scale in Fig. 3~b!, where one
realizes that after the first three points the rest of the curv
exponential@a straight line in the logarithmic plot in Fig
3~b!#, and the first three points decay even more rapidly.
far as traversal time is concerned, we are still in an emb
rassing situation where one does not know how to define
accurate time scale because of the time diffraction. Howe
at least we can define a delay time which is the differe
between the time of flight and the peak time of the tim
diffraction spot. We have found an interesting phenomen
that the delay time is almost constant for different distanc
which seems consistent with an earlier prediction@14# and
with the recent experimental results that showed a lack
thickness dependence of the tunneling time@3#. A closer
look at the delay time reveals that the delay time increa
slowly and linearly with the increasing distances as shown
Fig. 4. One learns from Fig. 4 that the delay time increa
considerably slowly from about 0.05 to 2.1310214 s within
the same time scale while the distance increases from
450 nm. This means that increasing the thickness of the
nescent area results in small changes in the delay time. I
difference cannot be resolved in experiments, the delay t
might be considered constant.

In passing, we follow other authors on this subject
show our loyalty to the principle of the Einstein causali
We assume that there is a waiting process for the arriv
waves to establish themselves in front of the barrier. Wh
s
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the waves are establishing, a forward tail of the waves
already extended into the barrier. Although, for every part
the waves the traversal distance is the same, but, for a ce
observation time, the forward part may be closer to its pe
light intensity than the later parts, or, equivalently, an ear
part of an incident wave train may suffer less attenuati
Therefore, the peak of an incident light pulse is shifted f
ward, so that its group velocity exceeds the light speed
vacuum. The above discussion details the previous con
ture of the reshaping process.

Let us now summarize the present work. We have p
posed the concept of time diffraction of evanescent lig
waves, which is shown to be useful to clarify the on
dimensional tunneling of photons. We have also shown
difference and resemblance between particle and photon
neling. According to Ref.@12#, transit propagation of nonrel
ativistic particles that obey the time-dependent Schro¨dinger
equation results in Fresnel diffraction in the time doma
whereas the propagation of relativistic particles that obey
Klein-Gordon equation cannot show time diffraction. In th
present work, we have found that the evanescent electrom
netic waves are also subject to time diffraction, while prop
gating electromagnetic waves are not. Based on the dis
ered time diffraction, we have concluded that an accur
traversal time cannot be defined. We have demonstrated
the delay time, which is the time interval between the time
flight and the peak time, is a slow and linear function of t
traversal distance. Similar to the case of nonrelativistic p
ticle tunneling, we have shown that superluminal tunneling
possible for evanescent waves. We have argued with a
cussion of the reshaping process that the Einstein causal
not violated in the cases where the group velocity of a lig
pulse exceeds the light speed.
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